Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Frailty Aging ; 11(4): 342-347, 2022.
Article in English | MEDLINE | ID: covidwho-2322317

ABSTRACT

The Resilience is a construct receiving growing attention from the scientific community in geriatrics and gerontology. Older adults show extremely heterogeneous (and often unpredictable) responses to stressors. Such heterogeneity can (at least partly) be explained by differences in resilience (i.e., the capacity of the organism to cope with stressors). The International Conference on Frailty and Sarcopenia Research (ICFSR) Task Force met in Boston (MA,USA) on April 20, 2022 to discuss the biological and clinical significance of resilience in older adults. The identification of persons with low resilience and the prompt intervention in this at-risk population may be critical to develop and implement preventive strategies against adverse events. Unfortunately, to date, it is still challenging to capture resilience, especially due to its dynamic nature encompassing biological, clinical, subjective, and socioeconomic factors. Opportunities to dynamically measure resilience were discussed during the ICFSR Task Force meeting, emphasizing potential biomarkers and areas of intervention. This article reports the results of the meeting and may serve to support future actions in the field.


Subject(s)
Frailty , Geriatrics , Sarcopenia , Humans , Aged , Sarcopenia/prevention & control , Advisory Committees , Adaptation, Psychological
2.
Subcell Biochem ; 103: 1-12, 2023.
Article in English | MEDLINE | ID: covidwho-2295362

ABSTRACT

Research on ageing has developed since Greek times. It had a very slow advance during the Middle Ages and a big increase in the Renaissance. Darwin contributed somehow to the understanding of the ageing process and initiated a cumulus of ageing explications under the name of Evolutionary Theories. Subsequently, science discovered a great number of genes, molecules, and cell processes that intervened in ageing. This led to the beginning of trials in animals to retard or avoid the ageing process. Alongside this, improvements, geriatric clinical investigations (with the evidence-based medicine tools) started to consolidate as a discipline and commenced to show the challenges and deficiencies of actual clinical trials in ageing; the COVID-19 outbreak revealed some of them. The history of clinical research in ageing has already begun and is essential to affront the challenges that the world will face with the increasing ageing population.


Subject(s)
COVID-19 , Geriatrics , Humans
3.
Brain Behav Immun ; 107: 361-368, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2095083

ABSTRACT

BACKGROUND: The COVID-19 pandemic has highlighted the urgent need to understand variation in immunosenescence at the population-level. Thus far, population patterns of immunosenescence have not well described. METHODS: We characterized measures of immunosenescence from the 2016 Venous Blood Study from the nationally representative U.S Health and Retirement Study (HRS) of individuals ages 50 years and older. RESULTS: Median values of the CD8+:CD4+, EMRA:Naïve CD4+ and EMRA:Naïve CD8+ ratios were higher among older participants and were lower in those with additional educational attainment. Generally, minoritized race and ethnic groups had immune markers suggestive of a more aged immune profile: Hispanics had a CD8+:CD4+ median value of 0.37 (95 % CI: 0.35, 0.39) compared to 0.30 in non-Hispanic Whites (95 % CI: 0.29, 0.31). Non-Hispanic Blacks had the highest median value of the EMRA:Naïve CD4+ ratio (0.08; 95 % CI: 0.07, 0.09) compared to non-Hispanic Whites (0.03; 95 % CI: 0.028, 0.033). In regression analyses, race/ethnicity and education were associated with large differences in the immune ratio measures after adjustment for age and sex. CONCLUSIONS: Lower educational attainment and minoritized racial ethnic status were associated with higher levels of immunosenescence. This population variation may have important implications for both risk of age-related disease and vulnerability to emerging pathogens (e.g., SARS-CoV-2).


Subject(s)
Academic Success , COVID-19 , Humans , Aged , Middle Aged , SARS-CoV-2 , Pandemics
4.
Front Aging ; 22021 Jul.
Article in English | MEDLINE | ID: covidwho-1674417

ABSTRACT

Aging has emerged as the greatest and most prevalent risk factor for the development of severe COVID-19 infection and death following exposure to the SARS-CoV-2 virus. The presence of multiple co-existing chronic diseases and conditions of aging further enhances this risk. Biological aging not only enhances the risk of chronic diseases, but the presence of such conditions further accelerates varied biological processes or "hallmarks" implicated in aging. Given growing evidence that it is possible to slow the rate of many biological aging processes using pharmacological compounds has led to the proposal that such geroscience-guided interventions may help enhance immune resilience and improve outcomes in the face of SARS-CoV-2 infection. Our review of the literature indicates that most, if not all, hallmarks of aging may contribute to the enhanced COVID-19 vulnerability seen in frail older adults. Moreover, varied biological mechanisms implicated in aging do not function in isolation from each other, and exhibit intricate effects on each other. With all of these considerations in mind, we highlight limitations of current strategies mostly focused on individual single mechanisms, and we propose an approach which is far more multidisciplinary and systems-based emphasizing network topology of biological aging and geroscience-guided approaches to COVID-19.

5.
Ann N Y Acad Sci ; 1507(1): 70-83, 2022 01.
Article in English | MEDLINE | ID: covidwho-1673249

ABSTRACT

For many years, it was believed that the aging process was inevitable and that age-related diseases could not be prevented or reversed. The geroscience hypothesis, however, posits that aging is, in fact, malleable and, by targeting the hallmarks of biological aging, it is indeed possible to alleviate age-related diseases and dysfunction and extend longevity. This field of geroscience thus aims to prevent the development of multiple disorders with age, thereby extending healthspan, with the reduction of morbidity toward the end of life. Experts in the field have made remarkable advancements in understanding the mechanisms underlying biological aging and identified ways to target aging pathways using both novel agents and repurposed therapies. While geroscience researchers currently face significant barriers in bringing therapies through clinical development, proof-of-concept studies, as well as early-stage clinical trials, are underway to assess the feasibility of drug evaluation and lay a regulatory foundation for future FDA approvals in the future.


Subject(s)
Aging/genetics , Aging/metabolism , Congresses as Topic/trends , Geroscience/trends , Longevity/physiology , Research Report , Autophagy/physiology , COVID-19/genetics , COVID-19/metabolism , COVID-19/mortality , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/therapy , Geroscience/methods , Humans , Metabolomics/methods , Metabolomics/trends , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Nervous System Diseases/therapy , Stem Cell Transplantation/methods , Stem Cell Transplantation/trends
6.
Elife ; 102021 01 28.
Article in English | MEDLINE | ID: covidwho-1513046

ABSTRACT

eLife is publishing a special issue on aging, geroscience and longevity to mark the rapid progress made in this field over the past decade, both in terms of mechanistic understanding and translational approaches that are poised to have clinical impact on age-related diseases.


Subject(s)
Aging , Geroscience , Humans , Longevity
7.
Geroscience ; 43(3): 1093-1112, 2021 06.
Article in English | MEDLINE | ID: covidwho-1499503

ABSTRACT

We are in the midst of the global pandemic. Though acute respiratory coronavirus (SARS-COV2) that leads to COVID-19 infects people of all ages, severe symptoms and mortality occur disproportionately in older adults. Geroscience interventions that target biological aging could decrease risk across multiple age-related diseases and improve outcomes in response to infectious disease. This offers hope for a new host-directed therapeutic approach that could (i) improve outcomes following exposure or shorten treatment regimens; (ii) reduce the chronic pathology associated with the infectious disease and subsequent comorbidity, frailty, and disability; and (iii) promote development of immunological memory that protects against relapse or improves response to vaccination. We review the possibility of this approach by examining available evidence in metformin: a generic drug with a proven safety record that will be used in a large-scale multicenter clinical trial. Though rigorous translational research and clinical trials are needed to test this empirically, metformin may improve host immune defenses and confer protection against long-term health consequences of infectious disease, age-related chronic diseases, and geriatric syndromes.


Subject(s)
COVID-19 , Communicable Diseases , Metformin , Aged , Communicable Diseases/drug therapy , Humans , Metformin/therapeutic use , Multicenter Studies as Topic , RNA, Viral , SARS-CoV-2
8.
Ageing Res Rev ; 66: 101258, 2021 03.
Article in English | MEDLINE | ID: covidwho-1385017

ABSTRACT

The recent pandemics of the SARS-Cov-2 has pushed physical activity (PA) and exercise at the forefront of the discussion, since PA is associated with a reduced risk of developing all the chronic diseases strongly associated with severe cases of SARS-Cov-2 and exercise is considered a complimentary therapeutics for the treatment of these age-related conditions. The mechanisms through which PA and exercise could contribute to reduce the severity of the SARS-Cov-2 infection would be multiple, including their capacity to boost the immune system, but also their global effect on slowing down the progression of the aging process. The present perspective presents a discussion on how PA and exercise might hypothetically be linked with SARS-Cov-2 infection, current scientific gaps and shortcomings as well as recommendations for advancing research in this area, placing the debate in the context of aging and gerosciences.


Subject(s)
COVID-19 , SARS-CoV-2 , Aging , Exercise , Humans , Pandemics
9.
J Am Geriatr Soc ; 69(11): 3023-3033, 2021 11.
Article in English | MEDLINE | ID: covidwho-1367342

ABSTRACT

The burden of senescent cells (SnCs), which do not divide but are metabolically active and resistant to death by apoptosis, is increased in older adults and those with chronic diseases. These individuals are also at the greatest risk for morbidity and mortality from SARS-CoV-2 infection. SARS-CoV-2 complications include cytokine storm and multiorgan failure mediated by the same factors as often produced by SnCs through their senescence-associated secretory phenotype (SASP). The SASP can be amplified by infection-related pathogen-associated molecular profile factors. Senolytic agents, such as Fisetin, selectively eliminate SnCs and delay, prevent, or alleviate multiple disorders in aged experimental animals and animal models of human chronic diseases, including obesity, diabetes, and respiratory diseases. Senolytics are now in clinical trials for multiple conditions linked to SnCs, including frailty; obesity/diabetes; osteoporosis; and cardiovascular, kidney, and lung diseases, which are also risk factors for SARS-CoV-2 morbidity and mortality. A clinical trial is underway to test if senolytics decrease SARS-CoV-2 progression and morbidity in hospitalized older adults. We describe here a National Institutes of Health-funded, multicenter, placebo-controlled clinical trial of Fisetin for older adult skilled nursing facility (SNF) residents who have been, or become, SARS-CoV-2 rtPCR-positive, including the rationale for targeting fundamental aging mechanisms in such patients. We consider logistic challenges of conducting trials in long-term care settings in the SARS-CoV-2 era, including restricted access, consent procedures, methods for obtaining biospecimens and clinical data, staffing, investigational product administration issues, and potential solutions for these challenges. We propose developing a national network of SNFs engaged in interventional clinical trials.


Subject(s)
COVID-19 Drug Treatment , Cellular Senescence/drug effects , Flavonols/therapeutic use , Skilled Nursing Facilities , Aged , COVID-19/prevention & control , Clinical Trials as Topic , Drug Monitoring , Humans
10.
J Am Geriatr Soc ; 69(9): 2455-2463, 2021 09.
Article in English | MEDLINE | ID: covidwho-1276708

ABSTRACT

Geriatricians and others must embrace the emerging field of geroscience. Until recently geroscience research was pursued in laboratory animals, but now this field requires specialized expertise in the care of vulnerable older patients with multiple chronic diseases and geriatric syndromes, the population likely to benefit the most from emerging therapies. While chronological aging measures the inevitable passage of clock time that occurs equally for everyone, biological aging varies among individuals, and importantly, it is modifiable. Advances in our understanding of biological aging, the discovery of strategies for modifying its rate, and an appreciation of aging as a shared risk factor for chronic diseases have jointly led to the Geroscience Hypothesis. This hypothesis states that interventions modifying aging biology can slow its progression-resulting in the delay or prevention of the onset of multiple diseases and disorders. Here we wish to report on the Third Geroscience Summit held at National Institutes of Health on November 4-5, 2019, which highlighted the importance of engaging other disciplines including clinicians. Involvement by scientists with expertise in clinical trials, health outcomes research, behavioral and social sciences, health policy, and economics is urgently needed to translate geroscience discoveries from the bench to clinical care and health policy. Adding to the urgency of broadening this geroscience coalition is the emergence of biological aging as one the most important modifiable factors of COVID-19, combined with the inability of our society to once again recognize and confront aging as a priority and opportunity when facing these types of public health emergencies.


Subject(s)
Chronic Disease/prevention & control , Chronobiology Discipline , Geriatrics , Health Policy , Aged , Aged, 80 and over , Aging , COVID-19 , Female , Humans , Male , SARS-CoV-2
11.
Ageing Res Rev ; 63: 101167, 2020 11.
Article in English | MEDLINE | ID: covidwho-848838

ABSTRACT

Geroscience offers a counterpoint to the challenged pursuit of curing diseases of aging, by focusing on slowing the biological aging process for extended healthspan earlier in life. Remarkable progress has led this field toward animal trials and the next challenge lies with translation to humans. There is an emerging number of small human trials that can take advantage of new models integrating behavioral and social factors. Understanding dynamic aging mechanisms, given the powerful social determinants of aging (Crimmins, 2020) and human variability and environmental contexts (Moffitt, 2020), will be critical. Behavioral and social factors are intrinsic to aging. Toxic stressors broadly defined can lead to stress-acceleration of aging, either directly impacting aging processes or by shaping poor behavioral health, and underlie the socioeconomic disparities of aging. In contrast, hormetic stressors, acute intermittent stressors of moderate intensity, can produce stress resilience, the ability for quick recovery and possibly rejuvenation of cells and tissues. Although health research usually examines static biomarkers, aging is reflected in dynamic ability to recover from challenges pointing to new interventions and targets for examining mechanisms. A fuller model incorporating stress resilience provides innovative biobehavioral interventions, both for bolstering response to challenges, such as COVID-19, and for improving healthspan.


Subject(s)
Aging , Hormesis , Stress, Physiological , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections , Humans , Pandemics , Pneumonia, Viral , Rejuvenation , SARS-CoV-2
12.
J Interferon Cytokine Res ; 40(9): 433-437, 2020 09.
Article in English | MEDLINE | ID: covidwho-713259

ABSTRACT

The essential scope of the coronavirus infectious disease 2019 (COVID-19) pandemic is focused on developing effective treatments and vaccines for acute SARS-CoV-2 infection. There is also a critical need to develop interventions to prevent the complications of COVID-19, which occur with an alarming frequency in older adults. Since severe pathologic effects of infection occur with increasing age, COVID-19 falls under the geroscience concept that all diseases in older adults have a common and major underlying cause of declining function and resilience. Geroscience posits that manipulation of aging will simultaneously delay the appearance or severity of major diseases because they share the same risk factor: aging and the multiple processes involved in aging. Drug combinations that target multiple aging processes and the cytokine networks associated with them would not necessarily limit SARS-CoV-2 infection rates but would prevent severe pathologic consequences of the disease in older adults by maintaining a more youthful-like resilience to infection-related complications. A drug cocktail aimed at controlling cytokine actions would complement current clinical treatments and vaccine effectiveness for COVID-19 and serve as a prototype for future age-related infectious disease pandemics wherein the elderly population is especially vulnerable.


Subject(s)
Aging/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Aging/physiology , Betacoronavirus , COVID-19 , Cytokines/blood , Humans , Pandemics , Physical Fitness/physiology , SARS-CoV-2
13.
Aging Dis ; 11(4): 725-729, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-695278

ABSTRACT

The data on COVID-19 is clear on at least one point: Older adults are most vulnerable to hospitalization, disability and death following infection with the novel coronavirus. Therefore, therapeutically addressing degenerative aging processes as the main risk factors appears promising for tackling the present crisis and is expected to be relevant when tackling future infections, epidemics and pandemics. Therefore, utilizing a geroscience approach, targeting aging processes to prevent multimorbidity, via initiating broad clinical trials of potential geroprotective therapies, is recommended.

14.
J Nutr Health Aging ; 24(7): 685-691, 2020.
Article in English | MEDLINE | ID: covidwho-603657

ABSTRACT

A new coronavirus, called SARS-CoV-2, was identified in Wuhan, China, in December 2019. The SARS-CoV-2 spread very rapidly, causing a global pandemic, Coronavirus Disease 2019 (COVID-19). Older adults have higher peak of viral load and, especially those with comorbidities, had higher COVID-19-related fatality rates than younger adults. In this Perspective paper, we summarize current knowledge about SARS-CoV-2 and aging, in order to understand why older people are more affected by COVID-19. We discuss about the possibility that the so-called "immunosenescence" and "inflammaging" processes, already present in a fraction of frail older adults, could allow the immune escape of SARS-CoV-2 leading to COVID-19 serious complications. Finally, we propose to use geroscience approaches to the field of COVID-19.


Subject(s)
Aging , Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Geriatrics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Virology , Aged , Aging/immunology , Aging/pathology , COVID-19 , Humans , Inflammation/immunology , Inflammation/pathology , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL